Wednesday, August 25, 2010

Science during the Renaissance Period

During the Renaissance, great advances occurred in geography, astronomy, chemistry, physics, math, manufacturing, and engineering. The rediscovery of ancient scientific texts was accelerated after the Fall of Constantinople in 1453, and the invention of printing which would democratize learning and allow a faster propagation of new ideas. But, at least in its initial period, some see the Renaissance as one of scientific backwardness. Historians like George Sarton and Lynn Thorndike have criticized how the Renaissance affected science, arguing that progress was slowed for some amount of time. Humanists favored human-centered subjects like politics and history over study of natural philosophy or applied mathematics. Others have focused on the positive influence of the Renaissance, pointing to factors like the rediscovery of lost or obscure texts and the increased emphasis on the study of language and the correct reading of texts.

Marie Boas Hall coined the term Scientific Renaissance to designate the early phase of the Scientific Revolution. More recently, Peter Dear has argued for a two-phase model of early modern science: a Scientific Renaissance of the 15th and 16th centuries, focused on the restoration of the natural knowledge of the ancients; and a Scientific Revolution of the 17th century, when scientists shifted from recovery to innovation.

The 14th century saw the beginning of the cultural movement of the Renaissance. The rediscovery of ancient texts was accelerated after the Fall of Constantinople, in 1453, when many Byzantine scholars had to seek refuge in the West, particularly Italy. Also, the invention of printing was to have great effect on European society: the facilitated dissemination of the printed word democratized learning and allowed a faster propagation of new ideas.

But this initial period is usually seen as one of scientific backwardness. There were no new developments in physics or astronomy, and the reverence for classical sources further enshrined the Aristotelian and Ptolemaic views of the universe. Philosophy lost much of its rigour as the rules of logic and deduction were seen as secondary to intuition and emotion. At the same time, Humanism stressed that nature came to be viewed as an animate spiritual creation that was not governed by laws or mathematics. Science would only be revived later, with such figures as Copernicus, Francis Bacon, and Descartes.

Important developments

Alchemy

Alchemy is the study of the transmutation of materials through obscure processes. It is sometimes described as an early form of chemistry. One of the main aims of alchemists was to find a method of transmuting lead to gold. A common belief of alchemists was that there is an essential substance from which all other substances formed, and that if you could reduce a substance to this original material, you could then construct it into another substance, like lead to gold. Medieval alchemists worked with two main elements, sulphur and mercury.

Paracelsus was an alchemist and physician of the Renaissance. The Paracelsians added a third element, salt, to make a trinity of alchemical elements.

Astronomy

The astronomy of the late Middle Ages was based on the geocentric model described by Claudius Ptolemy in antiquity. Probably very few practicing astronomers or astrologers actually read Ptolemy's Almagest, which had been translated into Latin by Gerard of Cremona in the 12th century. Instead they relied on introductions to the Ptolemaic system such as the De sphaera mundi of Johannes de Sacrobosco and the genre of textbooks known as Theorica planetarum. For the task of predicting planetary motions they turned to the Alfonsine Tables, a set of astronomical tables based on the Almagest models but incorporating some later modifications, mainly the trepidation model attributed to Thabit ibn Qurra. Contrary to popular belief, astronomers of the Middle Ages and Renaissance did not resort to "epicycles on epicycles" in order to correct the original Ptolemaic models—until one comes to Copernicus himself.

Sometime around 1450, mathematician Georg Purbach (1423–1461) began a series of lectures on astronomy at the University of Vienna. Regiomontanus (1436–1476), who was then one of his students, collected his notes on the lecture and later published them as Theoricae novae planetarum in the 1470s. This "New Theorica" replaced the older theorica as the textbook of advanced astronomy. Purbach also began to prepare a summary and commentary on the Almagest. He died after completing only six books, however, and Regiomontanus continued the task, consulting a Greek manuscript brought from Constantinople by Cardinal Bessarion. When it was published in 1496, the Epitome of the Almagest made the highest levels of Ptolemaic astronomy widely accessible to many European astronomers for the first time.

The last major event in Renaissance astronomy is the work of Nicolaus Copernicus (1473–1543). He was among the first generation of astronomers to be trained with the Theoricae novae and the Epitome. Shortly before 1514 he began to explore a shocking new idea that the Earth revolves around the Sun. He spent the rest of his life attempting a mathematical proof of heliocentrism. When De revolutionibus orbium coelestium was finally published in 1543, Copernicus was on his deathbed. A comparison of his work with the Almagest shows that Copernicus was in many ways a Renaissance scientist rather than a revolutionary, because he followed Ptolemy's methods and even his order of presentation. In astronomy, the Renaissance of science can be said to have ended with the truly novel works of Johannes Kepler (1571–1630) and Galileo Galilei (1564–1642).

Pliny the Elder: an imaginative 19th Century portrait. No contemporary depiction of Pliny has survived.

In the history of geography, the key classical text was the Geographia of Claudius Ptolemy (2nd century). It was translated into Latin in the 15th century by Jacopo d'Angelo. It was widely read in manuscript and went through many print editions after it was first printed in 1475. Regiomontanus worked on preparing an edition for print prior to his death; his manuscripts were consulted by later mathematicians in Nuremberg.

The information provided by Ptolemy, as well as Pliny the Elder and other classical sources, was soon seen to be in contradiction to the lands explored in the Age of Discovery. The new discoveries revealed shortcomings in classical knowledge; they also opened European imagination to new possibilities. Thomas More's Utopia was inspired partly by the discovery of the New World.

Mathematics & Accounting

The development of mathematics and accounting was intertwined during the Renaissance. Mathematics was in the midst of a period of significant development in the late 15th century. Hindu-Arabic numerals and algebra were introduced to Europe from Arab mathematics at the end of the 10th century by the Benedictine monk Gerbert of Aurillac, but it was only after Leonardo Pisano (also known as Fibonacci) put commercial arithmetic, Hindu-Arabic numerals, and the rules of algebra together in his Liber Abaci in 1202 that Hindu-Arabic numerals became widely used in Italy. 

While there is no direct relationship between algebra and accounting, the teaching of the subjects and the books published often intended for the children of merchants who were sent to reckoning schools (in Flanders and Germany) or abacus schools (known as abbaco in Italy), where they learned the skills useful for trade and commerce. There is probably no need for algebra in performing bookkeeping operations, but for complex bartering operations or the calculation of compound interest, a basic knowledge of arithmetic was mandatory and knowledge of algebra was very useful.

Chinese Science

The history of science and technology in China is both long and rich with many contributions to science and technology. In antiquity, independently of Greek philosophers and other civilizations, ancient Chinese philosophers made significant advances in science, technology, mathematics, and astronomy. The first recorded observations of comets, solar eclipses, and supernovae were made in China. Traditional Chinese medicine, acupuncture and herbal medicine were also practiced.

Among the earliest inventions were the abacus, the "shadow clock," and the first flying machines such as kites and Kongming lanterns. The four Great Inventions of ancient China: the compass, gunpowder, papermaking, and printing, were among the most important technological advances, only known in Europe by the end of the Middle Ages. The Tang Dynasty (AD 618 - 906) in particular, was a time of great innovation. A good deal of exchange occurred between Western and Chinese discoveries up to the Qing Dynasty.

The Chinese invented technologies involving mechanics, hydraulics, and mathematics applied to horology, metallurgy, astronomy, agriculture, engineering, music theory, craftsmanship, nautics, and warfare. By the Warring States Period (403–221 BC), they had advanced metallurgic technology, including the blast furnace and cupola furnace, while the finery forge and puddling process were known by the Han Dynasty (202 BC – AD 220). A sophisticated economic system in China gave birth to inventions such as paper money during the Song Dynasty (960–1279). The invention of gunpowder by the 10th century led to an array of inventions such as the fire lance, land mine, naval mine, hand cannon, exploding cannonballs, multistage rocket, and rocket bombs with aerodynamic wings and explosive payloads. With the navigational aid of the 11th-century compass and ability to steer at high sea with the 1st-century sternpost rudder, premodern Chinese sailors sailed as far as East Africa and Egypt. In water-powered clockworks, the premodern Chinese had used the escapement mechanism since the 8th century and the endless power-transmitting chain drive in the 11th century. They also made large mechanical puppet theaters driven by waterwheels and carriage wheels and wine-serving automatons driven by paddle wheel boats.

The contemporaneous Peiligang and Pengtoushan cultures represent the oldest Neolithic cultures of China and were formed around 7000 BC.[4] Some of the first inventions of Neolithic, prehistoric China include semilunar and rectangular stone knives, stone hoes and spades, the cultivation of millet, rice and the soybean, the refinement of sericulture, the building of rammed earth structures with lime-plastered house floors, the creation of the potter's wheel, the creation of pottery with cord-mat-basket designs, the creation of pottery tripods and pottery steamers, and the development of ceremonial vessels and scapulimancy for purposes of divination.  Francesca Bray argues that the domestication of the ox and buffalo during the Longshan culture (c. 3000–c. 2000 BC) period, the absence of Longshan-era irrigation or high-yield crops, full evidence of Longshan cultivation of dry-land cereal crops which gave high yields "only when the soil was carefully cultivated," suggest that the plow was known at least by the Longshan culture period and explains the high agricultural production yields which allowed the rise of Chinese civilization during the Shang Dynasty (c. 1600–c. 1050 BC). With later inventions such as the multiple-tube seed drill and heavy moldboard iron plow, China's agricultural output could sustain a much larger population.

Four Great Inventions

The following is a list of the Four Great Inventions of ancient China—as designated by Joseph Needham (1900–1995), a sinologist known for his research on the history of Chinese science—in the chronological order that they were established in China.
Fragments of hemp wrapping paper dated to the reign of Emperor Wu of Han (141–87 BC)

The Diamond Sutra, the oldest printed book, published in AD 868 during the Tang Dynasty (618–907)

Paper

Although it is recorded that the Han Dynasty (202 BC–AD 220) court eunuch Cai Lun (b.c.50–AD 121) invented the pulp papermaking process and established the use of new raw materials used in making paper, ancient padding and wrapping paper artifacts dating to the 2nd century BC have been found in China, the oldest example of pulp papermaking being a map from Fangmatan, Tianshui; by the 3rd century, paper as a writing medium was in widespread use, replacing traditional but more expensive writing mediums such as strips of bamboo rolled into threaded scrolls, scrolls and strips of silk, wet clay tablets hardened later in a furnace, and wooden tablets. The earliest known piece of paper with writing on it was discovered in the ruins of a Chinese watchtower at Tsakhortei, Alxa League, where Han Dynasty troops had deserted their position in AD 110 following a Xiongnu attack. In the papermaking process established by Cai in 105, a boiled mixture of mulberry tree bark, hemp, old linens, and fish nets created a pulp that was pounded into paste and stirred with water; a wooden frame sieve with a mat of sewn reeds was then dunked into the mixture, which was then shaken and then dried into sheets of paper that were bleached under the exposure of sunlight; K.S. Tom says this process was gradually improved through leaching, polishing and glazing to produce a smooth, strong paper. 
 
Printing

Woodblock printing: The earliest specimen of woodblock printing a single-sheet dharani sutra in Sanskrit that was printed on hemp paper between 650 and 670 AD; it was unearthed in 1974 from a Tang tomb near Xi'an. A Korean miniature dharani Buddhist sutra discovered in 1966, bearing extinct Chinese writing characters used only during the reign of China's only self-ruling empress, Wu Zetian (r.690–705), is dated no earlier than 704 and preserved in a Silla Korean temple stupa built in 751. The first printed periodical, the Kaiyuan Za Bao was made available in AD 713. However, the earliest known book printed at regular size is the Diamond Sutra made during the Tang Dynasty (618–907), a 5.18 m (17 ft) long scroll which bears the date 868 AD, or the "fifteenth day of the fourth moon of the ninth year" of Emperor Yizong's (859–873) Xiantong 咸通 reign period. Joseph Needham and Tsien Tsuen-Hsuin write that the cutting and printing techniques used for the delicate calligraphy of the Diamond Sutra book are much more advanced and refined than the miniature dharani sutra printed earlier. The two oldest printed Chinese calendars are dated 877 and 882; they were found at the Buddhist pilgrimage site of Dunhuang; Patricia Ebrey writes that it is no surprise that some of the earliest printed items were calendars, since the Chinese found it necessary to calculate and mark which days were auspicious and which were not. 

An illustration published in Wang Zhen's (fl. 1290–1333) book of AD 1313 showing movable type characters arranged by rhyme scheme in round table compartments

Movable type: The polymath scientist and official Shen Kuo (1031–1095) of the Song Dynasty (960–1279) was the first to describe the process of movable type printing in his Dream Pool Essays of 1088, attributing this innovation to a little-known artisan named Bi Sheng (990–1051).  With the use of fired clay characters, Shen described Bi's technical process of making the type, type-setting, printing, and breaking up the type for further use. Bi had experimented with wooden type characters, but their use was not perfected until 1297 to 1298 with the model of the official Wang Zhen (fl. 1290–1333) of the Yuan Dynasty (1271–1368), who also arranged written characters by rhyme scheme on the surface of round table compartments. It was not until 1490 with the printed works of Hua Sui (1439–1513) of the Ming Dynasty (1368–1644) that the Chinese perfected metal movable type characters, namely bronze. The Qing Dynasty (1644–1912) scholar Xu Zhiding of Tai'an, Shandong developed vitreous enamel movable type printing in 1718. 

The earliest artistic depiction of a fire lance gunpowder weapon, a painting at Dunhuang, dated Five Dynasties and Ten Kingdoms Period (907–960 AD)

Effects on bookbinding: The advent of printing in the 9th century revolutionized bookbinding, as late Tang Dynasty paper books evolved from rolled scrolls of paper into folded leaves like a pamphlet, which developed further in the Song Dynasty (960–1279) into 'butterfly' bindings with leaves of paper folded down the center like a common book, then during the Yuan Dynasty (1271–1368) wrapped back bindings had two edges of the leaves attached to the spine and secured with a stiff paper cover on the back, and during the Ming Dynasty (1368–1644) books finally had thread-stitched bindings in the back. It was not until the early 20th century that traditional Chinese thread-stitched bookbinding was replaced by Western-style bookbinding, a parallel to the replacement of traditional Chinese print methods with the modern printing press, in the tradition of Johannes Gutenberg (c. 1400–1468).

Gunpowder

Although evidence of gunpowder's first use in China comes from the Five Dynasties and Ten Kingdoms Period (907–960),[30] the earliest known recorded recipes for gunpowder were written by Zeng Gongliang, Ding Du, and Yang Weide in the Wujing Zongyao military manuscript compiled in 1044 during the Song Dynasty (960–1279); the gunpowder formulas described were used in incendiary bombs lobbed from catapults, thrown down from defensive walls, or lowered down the wall by use of iron chains operated by a swape lever. Bombs launched from trebuchet catapults mounted on forecastles of naval ships ensured the victory of Song over Jin forces at the Battle of Caishi in 1161, while the Mongol Yuan Dynasty (1271–1368) used gunpowder bombs during their failed invasion of Japan in 1274 and 1281. During the 13th and 14th centuries, gunpowder formulas became more potent (with nitrate levels of up to 91%) and gunpowder weaponry more advanced and deadly, as evidenced in the Ming Dynasty (1368–1644) military manuscript Huolongjing compiled by Jiao Yu (fl. 14th to early 15th century) and Liu Ji (1311–1375), completed before the latter's death with a preface added by the former in a 1412 Nanyang publication of the work. 

Compass

A model in Kaifeng of a Chinese ladle-and-bowl type compass used for geomancy in the Han Dynasty (202 BC–220 AD); the historical authenticity of the model has been questioned by Li Shu-hua (1954). 

Although an ancient hematite artifact from the Olmec era in Mexico dating roughly 1000 BC indicates the possible use of the lodestone compass long before it was described in China, the Olmecs did not have iron which the Chinese would discover could be magnetized by contact with lodestone. Descriptions of lodestone attracting iron were made in the Guanzi, Master Lu's Spring and Autumn Annals and Huainanzi. The Chinese by the Han Dynasty (202 BC–220 AD) began using north-south oriented lodestone ladle-and-bowl shaped compasses for divination and geomancy and not yet for navigation. The Lunheng, written by Wang Chong (27–c. 100 AD) stated in chapter 52: "This instrument resembles a spoon, and when it is placed on a plate on the ground, the handle points to the south". There are, however, another two references under chapter 47 of the same text to the attractive power of a magnet according to Needham (1986), but Li Shu-hua (1954) considers it to be lodestone, and states that there is no explicit mention of a magnet in Lunheng. Shen Kuo (1031–1095) of the Song Dynasty (960–1279) was the first to accurately describe both magnetic declination (in discerning true north) and the magnetic needle compass in his Dream Pool Essays of 1088, while the author Zhu Yu (fl. 12th century) was the first to mention use of the compass specifically for navigation at sea in his book published in 1119. Even before this, however, the Wujing Zongyao military manuscript compiled by 1044 described a thermoremanence compass of heated iron or steel shaped as a fish and placed in a bowl of water which produced a weak magnetic force via remanence and induction; the Wujing Zongyao recorded that it was used as a pathfinder along with the mechanical South Pointing Chariot.

China has been the source of many significant inventions, including the Four Great Inventions of ancient China: papermaking, the compass, gunpowder, and printing (both woodblock and movable type). The list below contains these and other inventions.

Discoveries

Han Dynasty (202 BC – 220 AD) paintings on tile of Chinese guardian spirits representing 11 pm to 1 am (left) and 5 am to 7 am (right); the ancient Chinese, although discussing it in supernatural terms, acknowledged circadian rhythm within the human body

Bamboo and rocks by Li Kan (1244–1320); using evidence of fossilized bamboo found in a dry northern climate zone, Shen Kuo hypothesized that climates naturally shifted geographically over time.
Chinese remainder theorem: The Chinese remainder theorem, including simultaneous congruences in number theory, was first created by the mathematician Sunzi in the 3rd century AD, whose Mathematical Classic by Sun Zi (孙子算经, Sunzi suanjing) posed the problem: "There is an unknown number of things, when divided by 3 it leaves 2, when divided by 5 it leaves 3, and when divided by 7 it leaves a remainder of 2. Find the number." This method of calculation was used in calendrical mathematics by Tang Dynasty (618–907) mathematicians such as Li Chunfeng (602–670) and Yi Xing (683–727) in order to determine the length of the "Great Epoch", the lapse of time between the conjunctions of the moon, sun, and Five Planets (those discerned by the naked eye). Thus, it was strongly associated with the divination methods of the ancient Yijing. ts use was lost for centuries until Qin Jiushao (c. 1202–1261) revived it in his Mathematical Treatise in Nine Sections of 1247, providing constructive proof for it. 
Circadian rhythm, recognition of: The Huangdi Neijing, compiled by the 2nd century BC during the Han Dynasty (202 BC – 220 AD), noted the symptoms, behavior, and reactions of people with different diseases (i.e. of the liver, heart, spleen, lung, or kidneys) during different times of a 24-hour day. The idea of any organism following a daily circadian rhythm was not accepted in mainstream modern medical science even up until the 1960s, yet it is now well established that patients with Parkinson's disease lose much of their debilitating symptoms between 9 pm and midnight, while paroxysms of patients with asthma usually occur at night when secretion of hormones from the cortexes of the adrenal glands falls to a minimum. Although the ancient Chinese explained symptoms of diseased patients that followed the pattern of their circadian rhythms in terms of superstitious numerology and cyclic lore, they still documented such cases and expounded on them long before anyone else. Chinese works on acupuncture also dealt with circadian rhythm, including the Noon and Midnight Manual and the Mnemonic Rhyme to Aid in the Selection of Acu-points According to the Diurnal Cycle, the Day of the Month and the Season of the Year (compiled from circa 419 to circa 930 AD). 
Climate change, concept of: In his Dream Pool Essays of 1088, Shen Kuo (1031–1095) wrote about a landslide (near modern Yan'an) where petrified bamboos were discovered in a preserved state underground, in the dry northern climate zone of Shanbei, Shaanxi; Shen reasoned that since bamboo was known only to grow in damp and humid conditions, the climate of this northern region must have been different in the very distant past, postulating that climate change occurred over time. It should be noted that Shen also advocated a hypothesis in line with geomorphology after he observed a strata of marine fossils running in a horizontal span across a cliff of the Taihang Mountains, leading him to believe that it was once the location of an ancient shoreline that had shifted hundreds of km (mi) east over time (due to deposition of silt and other factors). 
Decimal fractions: As proven by inscriptions from the 13th century BC, the decimal system existed in China since the Shang Dynasty (c. 1600–c. 1050 BC). The earliest evidence of a decimal fraction, where the fraction's denominator is a power of ten, appears on an inscription of a standard measure of volume used by the mathematician and astronomer Liu Xin (c. 46 BC–23 AD), dated precisely 5 AD. The first significant piece of Chinese literature to feature decimal fractions was the The Nine Chapters on the Mathematical Art. This text was first mentioned in 179 AD, although Liu Hui (fl. 3rd century AD) asserts that some of its material predates the infamous Qin book burning in 213 BC (i.e. older than the oldest surviving Chinese mathematical treatise, the Book on Numbers and Computation, 202–186 BC). Liu Hui used decimal fractions with measurements and as solutions to equations. At first decimal fractions were written in word form, since it was Han Yan (fl. late 8th century) of the Tang Dynasty (607–907) who first used modern decimal notation to write out decimal fractions. Decimal fractions were vital to the work of Song (960–1279) mathematicians such as Yang Hui (1238–1298) and Qin Jiushao (c. 1201–1261). Jamshīd al-Kāshī (1380–1429), director of the astronomical observatory at Samarkand, adopted the use of decimal fractions; they were first mentioned in Europe by Christoff Rudolff of Augsburg in his Exempel-Buechlin of 1530, yet not given serious attention until the 1585 work of the Flemish mathematician Simon Stevin (1548–1620). 

Each bronze bell of Marquis Yi of Zeng (433 BC) bears an inscription describing the specific note it plays, its position on a 12-note scale, and how this scale differed from scales used by other Chinese states of the time; before this discovery in 1978, the oldest known surviving Chinese tuning set came from a 3rd century BC text (which alleges was written by Guan Zhong, d. 645 BC) with 5 tones and additions or subtractions of ⅓ of successive tone values which produce the rising fourths and falling fifths of Pythagorean tuning. 
Equal temperament: During the Han Dynasty (202 BC–220 AD), the music theorist and mathematician Jing Fang (78–37 BC) extended the 12 tones found in the 2nd century BC Huainanzi to 60. While generating his 60-divisional tuning, he discovered that 53 just fifths is approximate to 31 octaves, calculating the difference at ; this was the exact same value for 53 equal temperament calculated by the German mathematician Nicholas Mercator (c. 1620–1687) as 353/284, a value known as Mercator's Comma.[17][18] The Ming Dynasty (1368–1644) music theorist Zhu Zaiyu (1536–1611) elaborated in three separate works beginning in 1584 the tuning system of equal temperament; in an unusual event in music theory's history, the Flemish mathematician Simon Stevin (1548–1620) discovered the mathematical formula for equal temperament at roughly the same time (within 1 to 25 years of Zhu), yet he did not publish his work and it remained unknown until 1884; therefore, it is debatable who discovered equal temperament first, Zhu or Stevin. In order to obtain equal intervals, Zhu divided the octave (each octave with a ratio of 1:2, which can also be expressed as 1:212/12) into twelve equal semitones while each length was divided by the 12th root of 2. He did not simply divide the string into twelve equal parts (i.e. 11/12, 10/12, 9/12, etc.) since this would give unequal temperament; instead, he altered the ratio of each semitone by an equal amount (i.e. 1:2 11/12, 1:210/12, 1:29/12, etc.) and determined the exact length of the string by dividing it by 12√2 (same as 21/12). The Harmonie Universelle (1636) written by Marin Mersenne (1588–1648) was the first publication in Europe outlining equal temperament, a new system of tuning that was passionately defended by J.S. Bach (1685–1750) in his Well-Tempered Clavier of 1722. 
First law of motion, partial description: The Mohist philosophical canon of the Mojing, compiled by the followers of Mozi (c. 470 – c. 390 BC), provides the earliest known attempt to describe inertia: "The cessation of motion is due to the opposing force...If there is no opposing force...the motion will never stop. This is as true as that an ox is not a horse."[23] However, like many of the Hundred Schools of Thought during the Warring States Period (403–221 BC), the doctrine of the Mohist sect had little impact on the course of later Chinese thought, while this passage and others from the Mojing were only given serious attention by modern scholarship after the work of Joseph Needham in 1962. 
Gaussian elimination: First published in the West by Carl Friedrich Gauss (1777–1855) in 1826, the algorithm for solving linear equations known as Gaussian elimination is named after this Hanoverian mathematician, yet it was first expressed as the Array Rule in the Chinese Nine Chapters on the Mathematical Art, written at least by 179 AD during the Han Dynasty (202 BC–220 AD) and commented on by the 3rd century mathematician Liu Hui. 

Aware of underground minerals associated with certain plants by at least the 5th century BC, the Chinese extracted trace elements of copper from Oxalis corniculata, pictured here, as written in the 1421 text Precious Secrets of the Realm of the King of Xin.
Geobotanical prospecting: Geobotanical prospecting can be defined as the connection made between the types of vegetation that grow in certain areas and the minerals that can be found underground in those same areas; this observation was first made in China. It is now established in modern geobotany that only certain plants can grow in soils which are rich in certain types of minerals, such as Viola calaminaria and Thlaspi which grow in soils rich in zinc. The Zhou Dynasty (c. 1050–256 BC) Chinese Classic of Mountains and Rivers, compiled from the 6th to 2nd centuries BC, states that a certain "huitang" plant only grows near ore deposits of gold.  As seen in the 5th century BC text Tribute of Yu, geobotanical prospecting in ancient China was mainly concerned with describing the nature of soil in different regions for agricultural purposes. The Book of Master Wen, compiled by 380 AD and containing material from as far back as the 3rd century BC, states that the branches of trees tend to droop in soils where an abundance of jade is to be found. In about 290 AD, Zhang Hua (232–300) wrote that hematite was found in abundance in any soil where smartweed grew. In the Illustrated Mirror of the Earth, written in the early 6th century AD, there is a description of a plant with an elegant yellow stalk which was found to grow above copper, and another description of a plant with green leaves and a red stalk where lead is often found below.[28] In his Miscellaneous Morsels from Youyang, the Tang Dynasty (618–907) author Duan Chengshi (d. 863) noted that silver could often be found in the soil where ciboule onion grew, gold where a certain kind of shallot grew, and copper where ginger grew. Su Song (1020–1101) of the Song Dynasty (960–1279) described how Portulaca oleracea could yield mercury if pounded, dried, and allowed to decay. The Precious Secrets of the Realm of the King of Xin, written in 1421 during the Ming Dynasty (1368–1644), described how mineral trace elements were observed and could be extracted from certain plants, such as copper from Oxalis corniculata, gold from rape turnip, silver from weeping willows, and lead and tin from mugwort, chestnut, barley, and wheat. Geobotanical prospecting was unknown in the rest of the world until about 1600 when Sir Thomas Challoner and his first cousin Thomas Challoner discovered alum mines on the former's property of Belman Bank, Guisborough, Yorkshire, England. Both Challoner relatives realized here (and later in Italy) that leaves of oak trees were a much darker, richer green and their branches stronger and more spread out where the alum was to be found. 
Horner scheme: Although named after English mathematician William George Horner (1786–1837), the Horner scheme, an algorithm used to estimate the root of an equation and evaluate polynomials in monomial form, was actually first invented in China to find the cube root of the number 1,860,867 (the answer given being 123).This is found in the Han Dynasty (202 BC–220 AD) work The Nine Chapters on the Mathematical Art, commented on by Liu Hui (fl. 3rd century) in 263 AD. The original Nine Chapters found the root of equations through continued fractions, just like the later Italian mathematician Joseph Louis Lagrange (1736–1813), while Liu Hui achieved this by increasing decimals, just like William George Horner in his work of 1819. 

Mohandas Karamchand Gandhi tends to a leper; the Chinese were the first to describe the symptoms of leprosy.
Leprosy, first description of its symptoms: The Feng zhen shi 封診式 (Models for sealing and investigating), written between 266 and 246 BC in the State of Qin during the Warring States Period (403–221 BC), is the earliest known text which describes the symptoms of leprosy, termed under the generic word li 癘 (for skin disorders). This text mentioned the destruction of the nasal septum in those suffering from leprosy (an observation that would not be made outside of China until the writings of Avicenna in the 11th century), and according to Katrina McLeod and Robin Yates it also stated lepers suffered from "swelling of the eyebrows, loss of hair, absorption of nasal cartilage, affliction of knees and elbows, difficult and hoarse respiration, as well as anaesthesia." Leprosy was not described in the West until the writings of the Roman authors Aulus Cornelius Celsus (25 BC – 37 AD) and Pliny the Elder (23–79 AD). Although it is alleged that the Indian Sushruta Samhita, which describes leprosy, is dated to the 6th century BC, India's earliest written script (besides the then long extinct Indus script)—the Brāhmī script—is thought to have been created no earlier than the 3rd century BC. 
Negative numbers, symbols for and use of: In the Nine Chapters on the Mathematical Art compiled during the Han Dynasty (202 BC–220 AD) by 179 AD and commented on by Liu Hui (fl. 3rd century) in 263, negative numbers appear as black rods and positive numbers as red rods in the Chinese counting rods system. Liu Hui also used slanted counting rods to denote negative numbers. Negative numbers denoted by a "+" sign also appear in the ancient Bakhshali manuscript of India, yet scholars disagree as to when it was compiled, giving a collective range of 200 to 600 AD. Negative numbers were known in India certainly by about 630 AD, when the mathematician Brahmagupta (598–668) used them. Negative numbers were first used in Europe by the Greek mathematician Diophantus (fl. 3rd century) in about 275 AD, yet were considered absurd in the West until The Great Art written in 1545 by the Italian mathematician Girolamo Cardano (1501–1576). 
Pi calculated as : The ancient Egyptians, Babylonians, Indians, and Greeks had long made approximations for π by the time the Chinese mathematician and astronomer Liu Xin (c. 46 BC–23 AD) improved the old Chinese approximation of simply 3 as π to 3.1547 as π (with evidence on vessels dating to the Wang Mang reign period, 9–23 AD, of other approximations of 3.1590, 3.1497, and 3.1679).  Next, Zhang Heng (78–139 AD) made two approximations for π, by proportioning the celestial circle to the diameter of the earth as = 3.1724 and using (after a long algorithm) the square root of 10, or 3.162. In his commentary on the Han Dynasty mathematical work The Nine Chapters on the Mathematical Art, Liu Hui (fl. 3rd century) used various algorithms to render multiple approximations for pi at 3.142704, 3.1428, and 3.14159.  Finally, the mathematician and astronomer Zu Chongzhi (429–500) approximated pi to an even greater degree of accuracy, rendering it , a value known in Chinese as Milü ("detailed ratio"). This was the best rational approximation for pi with a denominator of up to four digits; the next rational number is , which is the best rational approximation. Zu ultimately determined the value for π to be between 3.1415926 and 3.1415927. Zu's approximation was the most accurate in the world, and would not be achieved elsewhere for another millennium,[42] until Madhava of Sangamagrama and Jamshīd al-Kāshī in the early 15th century.

With the description in Han Ying's written work of 135 BC (Han Dynasty), the Chinese were the first to observe that snowflakes had a hexagonal structure.

Oiled garments left in the tomb of Emperor Zhenzong of Song (r. 997–1022), pictured here in this portrait, caught fire seemingly at random, a case which a 13th century author related back to the spontaneous combustion described by Zhang Hua (232–300) around 290 AD
Snowflake, observation of its hexagonal structure: In his Moral Discourses Illustrating the Han Text of the Book of Songs of 135 BC, the Han Dynasty (202 BC– 220 AD) author Han Ying wrote: "Flowers of plants and trees are generally five-pointed, but those of snow, which are called ying, are always six pointed." This was the first explicit reference in world history to the hexagonal structure of snowflakes. From then on, Chinese writers throughout the centuries mentioned the hexagonal structure of snowflakes, including the crown prince and poet Xiao Tong (501–531) and the Neo-Confucian philosopher Zhu Xi (1130–1200). In contrast to Western ideas of snowflakes, Olaus Magnus (1490–1557) wrote in his A Description of the Northern Peoples in 1555 that snowflakes could take on many shapes, including crescents, arrows, nails, bells, and even the shape of the human hand. It was not until 1591 that Thomas Hariot (1560–1621) recognized the snowflake's hexagonal structure, but he did not publish his jotted private notes on the subject. Finally, the astronomer Johannes Kepler (1571–1630) wrote the first known European publication on the subject in 1611, the fifteen-page A New Year's Gift, or On the Six-Cornered Snowflake. 
Solar wind, observation of via comet tails: In the Book of Jin compiled during the Tang Dynasty (618–907), a passage written in 635 AD states: "In general, when a comet appears in the morning, its tail points towards the west, and when it appears in the evening, its tail points towards the east. This is a constant rule. If the comet is north or south of the Sun, its tail always points following the same direction as the light radiating from the Sun." In other words, as Robert Temple states, "the Chinese observations of comet tails had been refined enough to establish the principle that comet tails always point away from the sun." Furthermore, the text reveals that astronomers by at least the Tang Dynasty understood that, like the Moon, the light shining from a comet was merely reflected sunlight; from the writings of Jing Fang (78–37 BC), Wang Chong (27–100), Zhang Heng (78–139), and others it is apparent that the Chinese already by the Han Dynasty (202 BC – 220 AD) understood that the Moon was illuminated solely by the Sun's rays of light. Although the Chinese explained this constant rule about comets in terms of supernatural qi, it is now understood in modern astronomy as the concept of 'solar wind', where the powerful force of radiation from the Sun causes comets to turn away from it. 
Spontaneous combustion, recognition of: In his Record of Strange Things written sometime before 290 AD, the Jin Dynasty official and poet Zhang Hua (232–300) wrote the earliest known account acknowledging spontaneous combustion: "If ten thousand piculs of oil are accumulated in store, the oil will ignite itself spontaneously. The calamitous fire which occurred in the arsenal of the time of the Emperor Wu [of the Jin Dynasty] in the Taishi reign-period [265–74 AD] was caused by the stored oil." There were other mentionings of spontaneous combustion in early Chinese literary works, while more often than not fires were blamed on arsonists. The 13th-century work Parallel Cases Solved by Eminent Judges recounts an event in 1050 where imperial guards were charged in a court of law with the crime of allowing a fire to spread in the palace at Kaifeng; their sentence was commuted from the death penalty to a light punishment when artisans confessed that the chemical-enhanced (perhaps quicklime) oily curtains they made had the propensity to catch fire spontaneously when left out in the open, a statement which convinced Emperor Renzong (r. 1022–1063) since a random fire had recently started in oiled garments of Emperor Zhenzong's (r. 997–1022) mausoluem. The author of Parallel Cases Solved by Eminent Judges noted that Zhang Hua had once believed oil stored in an arsenal spontaneously combusted, yet he concludes that what happened in that ancient arsenal was most likely the result of oiled garments, not just oil by itself. The first acknowledgement of spontaneous combustion anywhere else in the world was made by J. P. F. Duhamel in a French scientific paper published in 1757, in which he described oiled canvas sails catching fire after being left out in the summer sun for only a few hours. 
Sunspots, recognition of as solar phenomena: The astronomer Gan De (fl. 4th century BC) from the State of Qi during the Warring States Period (403–221 BC) was the first known writer to attribute sunspots as characteristics of the sun and true solar phenomena. The next known recording of a sunspot in China was in 165 BC, yet the first precisely dated sunspot observed from China occurred on May 10, 28 BC, during the Han Dynasty (202 BC – 220 AD).[50] From 28 BC to 1368 AD, a total of 112 other instances of sunspots were recorded by the Chinese.[51] In the West, from the time of Aristotle (384–322 BC) of ancient Greece to the time of Galileo Galilei (1564–1642), it was commonly believed that the heavens were perfect, including the sun. After the first written observation in the West of sunpots by Einhard (d. 840) in his Life of Charlemagne in 807 AD, the sun's periodic blemishes were explained by Western thinkers as being small invisible satellites or transits of Mercury and Venus; it was only in the 17th century that these beliefs were overturned. 
True north, concept of: The Song Dynasty (960–1279) official Shen Kuo (1031–1095), alongside his colleague Wei Pu, improved the orifice width of the sighting tube to make nightly accurate records of the paths of the moon, stars, and planets in the night sky, for a continuum of five years.  By doing so, Shen fixed the outdated position of the pole star, which had shifted over the centuries since the time Zu Geng (fl. 5th century) had plotted it; this was due to the precession of the Earth's rotational axis. When making the first known experiments with a magnetic compass, Shen Kuo wrote that the needle always pointed slightly east rather than due south, an angle he measured which is now known as magnetic declination, and wrote that the compass needle in fact pointed towards the magnetic north pole instead of true north (indicated by the current pole star); this was a critical step in the history of accurate navigation with a compass.

Islamic Science

Science in medieval Islam, also known as Islamic or Arabic science, is a term used in the history of science to refer to the science developed in the Islamic world prior to the modern era, particularly during what is known as the Islamic Golden Age (dated variously between the 7th and 15th centuries). In the course of the expansion of the Islamic world, Muslim scholars encountered the science, mathematics, and medicine of antiquity through the works of Aristotle, Archimedes, Galen, Ptolemy, Euclid, and others. These works and the important commentaries on them were the wellspring of science during the Medieval period. They were translated into Arabic, the lingua franca of this period; scientists within the Islamic civilization were of diverse ethnicity (a great portion were Persians  and Arabs,  in addition to Berbers, Moors and Turks) and diverse religious backgrounds (mostly Muslims, in addition to many Christians and Jews, as well as Sabians, Zoroastrians and the irreligious).

Scientific method

Muslim scientists placed a greater emphasis on experimentation than previous ancient civilizations (for example, Greek philosophy placed a greater emphasis on rationality rather than empiricism), which partly arose from the emphasis on empirical observation found in the Qur'an and Sunnah, and the rigorous historical methods established in the science of hadith.  In addition, there was greater emphasis on combining theory with practice in the Islamic world, where it was common for those studying the sciences to be artisans as well, something that was "considered an aberration in the ancient world",  thus Islamic experts in the sciences were usually expert makers of instruments that would enhance their powers of observation and calculation.  Muslim scientists thus combined precise observation, controlled experiment and careful records with a new approach to scientific inquiry which led to the development of the scientific method.  In particular, the empirical observations and experiments of Ibn al-Haytham (Alhacen) in his Book of Optics (1021) is seen as the beginning of the modern scientific method, which he first introduced to optics and psychology. Rosanna Gorini writes:

"According to the majority of the historians al-Haytham was the pioneer of the modern scientific method. With his book he changed the meaning of the term optics and established experiments as the norm of proof in the field. His investigations are based not on abstract theories, but on experimental evidences and his experiments were systematic and repeatable." 

Other early experimental methods were developed by Jābir ibn Hayyān (for chemistry), Muhammad al-Bukhari (for history and the science of hadith), Al-Kindi (for the Earth sciences),  Avicenna (for medicine), Abū Rayhān al-Bīrūnī (for astronomy and mechanics),  Ibn Zuhr (for surgery)  and Ibn Khaldun (for the social sciences). The most important development of the scientific method, the use of experimentation and quantification to distinguish between competing scientific theories set within a generally empirical orientation, was introduced by Muslim scientists.

Ibn al-Haytham, a pioneer of modern optics,[83] used the scientific method to obtain the results in his Book of Optics. In particular, he combined observations, experiments and rational arguments to show that his modern intromission theory of vision, where rays of light are emitted from objects rather than from the eyes, is scientifically correct, and that the ancient emission theory of vision supported by Ptolemy and Euclid (where the eyes emit rays of light), and the ancient intromission theory supported by Aristotle (where objects emit physical particles to the eyes), were both wrong.[84] It is known that Roger Bacon was familiar with Ibn al-Haytham's work. Ibn al-Haytham is featured on the 10,000 Iraqi dinar note.

Ibn al-Haytham developed rigorous experimental methods of controlled scientific testing in order to verify theoretical hypotheses and substantiate inductive conjectures.[85] Ibn al-Haytham's scientific method was similar to the modern scientific method in that it consisted of the following procedures: 
Observation
Statement of problem
Formulation of hypothesis
Testing of hypothesis using experimentation
Analysis of experimental results
Interpretation of data and formulation of conclusion
Publication of findings

Agricultural sciences

During the Arab Agricultural Revolution, Muslim scientists made significant advances in botany and laid the foundations of agricultural science. Muslim botanists and agriculturists demonstrated advanced agronomical, agrotechnical and economic knowledge in areas such as meteorology, climatology, hydrology, and soil occupation. They also demonstrated agricultural knowledge in areas such as pedology, agricultural ecology, irrigation, preparation of soil, planting, spreading of manure, sowing, cutting trees, grafting, pruning, prophylaxis, phytotherapy, the care and improvement of cultures and plants, and the harvest and storage of crops. 

Al-Dinawari (828-896) is considered the founder of Arabic botany for his Book of Plants, in which he described at least 637 plants and discussed plant evolution from its birth to its death, describing the phases of plant growth and the production of flowers and fruit. 

In the 13th century, the Andalusian-Arabian biologist Abu al-Abbas al-Nabati developed an early scientific method for botany, introducing empirical and experimental techniques in the testing, description and identification of numerous materia medica, and separating unverified reports from those supported by actual tests and observations.  His student Ibn al-Baitar published the Kitab al-Jami fi al-Adwiya al-Mufrada, which is considered one of the greatest botanical compilations in history, and was a botanical authority for centuries. It contains details on at least 1,400 different plants, foods, and drugs, 300 of which were original discoveries. His work was also influential in Europe after it was translated into Latin in 1758.

Medicine

Muslim physicians made many significant advances and contributions to medicine, including anatomy, ophthalmology, pathology, the pharmaceutical sciences (including pharmacy and pharmacology), physiology, and surgery. Muslim physicians set up dedicated hospitals, which later spread to Europe during the Crusades, inspired by the hospitals in the Middle East. 

Al-Kindi wrote De Gradibus, in which he first demonstrated the application of quantification and mathematics to medicine, particularly in the field of pharmacology. This includes the development of a mathematical scale to quantify the strength of drugs, and a system that would allow a doctor to determine in advance the most critical days of a patient's illness.  Razi (Rhazes) (865-925), a pioneer of pediatrics,[102] recorded clinical cases of his own experience and provided very useful recordings of various diseases. His Comprehensive Book of Medicine, which introduced measles and smallpox, was very influential in Europe. He also introduced urinalysis and stool tests. 

Abu al-Qasim (Abulcasis), considered a pioneer of modern surgery, wrote the Al-Tasrif (1000), a 30-volume medical encyclopedia which was taught at Muslim and European medical schools until the 17th century. He invented numerous surgical instruments, including the first instruments unique to women, as well as the surgical uses of catgut and forceps, the ligature, surgical needle, scalpel, curette, retractor, surgical spoon, sound, surgical hook, surgical rod, and specula,[citation needed] bone saw, [dubious – discuss] and plaster. In 1021, Ibn al-Haytham (Alhacen) made important advances in eye surgery, as he studied and correctly explained the process of sight and visual perception for the first time in his Book of Optics (1021). 

Avicenna, who was a pioneer of experimental medicine and was also an influential thinker and medical scholar, wrote The Canon of Medicine (1025) and The Book of Healing (1027), which remained standard textbooks in both Muslim and European universities until at least the 17th century. Avicenna's contributions include the discovery of the contagious nature of infectious diseases, the introduction of quarantine to limit the spread of contagious diseases, the introduction of experimental medicine,  evidence-based medicine, clinical trials,  randomized controlled trials, efficacy tests,  and clinical pharmacology,  the importance of dietetics and the influence of climate and environment on health, the distinction of mediastinitis from pleurisy, the contagious nature of phthisis and tuberculosis, the distribution of diseases by water and soil, and the first careful descriptions of skin troubles, sexually transmitted diseases, perversions, and nervous ailments, as well the use of ice to treat fevers, and the separation of medicine from pharmacology, which was important to the development of the pharmaceutical sciences. 

Ibn Zuhr (Avenzoar) is considered a pioneer of experimental surgery,  for introducing the experimental method into surgery in the 12th century, as he was the first to employ animal testing in order to experiment with surgical procedures before applying them to human patients.  He also performed the first dissections and postmortem autopsies on both humans as well as animals. 

In 1242, Ibn al-Nafis, considered a pioneer of circulatory physiology, was the first to describe pulmonary circulation and coronary circulation,  which form the basis of the circulatory system, for which he is considered one of the greatest physiologists in the Middle Ages.  He also described the earliest concept of metabolism,  and developed new systems of physiology and psychology to replace the Avicennian and Galenic systems, while discrediting many of their erroneous theories on the four humours, pulsation,  bones, muscles, intestines, sensory organs, bilious canals, esophagus, stomach, etc. Ibn al-Lubudi (1210–1267) rejected the theory of four humours supported by Galen and Hippocrates, discovered that the body and its preservation depend exclusively upon blood, rejected Galen's idea that women can produce sperm, and discovered that the movement of arteries are not dependent upon the movement of the heart, that the heart is the first organ to form in a fetus' body (rather than the brain as claimed by Hippocrates), and that the bones forming the skull can grow into tumors. 

The Tashrih al-badan (Anatomy of the body) of Mansur ibn Ilyas (c. 1390) contained comprehensive diagrams of the body's structural, nervous and circulatory systems.  During the Black Death bubonic plague in 14th century al-Andalus, Ibn Khatima and Ibn al-Khatib hypothesized that infectious diseases are caused by "contagious entities" which enter the human body.  Other medical innovations first introduced by Muslim physicians include the discovery of the immune system, the use of animal testing, and the combination of medicine with other sciences (including agriculture, botany, chemistry, and pharmacology),  as well as the invention of the injection syringe by Ammar ibn Ali al-Mawsili in 9th century Iraq, the first drugstores in Baghdad (754), the distinction between medicine and pharmacy by the 12th century, and the discovery of at least 2,000 medicinal and chemical substances.

Logic
 
Islamic logic not only included the study of formal patterns of inference and their validity but also elements of the philosophy of language and elements of epistemology and metaphysics. Due to disputes with Arabic grammarians, Islamic philosophers were very interested in working out the relationship between logic and language, and they devoted much discussion to the question of the subject matter and aims of logic in relation to reasoning and speech. In the area of formal logical analysis, they elaborated upon the theory of terms, propositions and syllogisms. They considered the syllogism to be the form to which all rational argumentation could be reduced, and they regarded syllogistic theory as the focal point of logic. Even poetics was considered as a syllogistic art in some fashion by many major Islamic logicians.

Important developments made by Muslim logicians included the development of "Avicennian logic" as a replacement of Aristotelian logic. Avicenna's system of logic was responsible for the introduction of hypothetical syllogism,  temporal modal logic, and inductive logic.   Other important developments in Islamic philosophy include the development of a strict science of citation, the isnad or "backing", and the development of a scientific method of open inquiry to disprove claims, the ijtihad, which could be generally applied to many types of questions. From the 12th century, despite the logical sophistication of al-Ghazali, the rise of the Asharite school in the late Middle Ages slowly limited original work on logic in the Islamic world, though it did continue into the 15th century.
 
Mathematics
  
Al-Khwarizmi, a pioneer of algebra and algorithms.

Al-Khwarizmi (780-850) (born in Iran) , from whose name the word algorithm derives, contributed significantly to algebra, which is named after his book, Kitab al-Jabr, the first book on elementary algebra. He also introduced what is now known as Arabic numerals, which originally came from India, though Muslim mathematicians did make several refinements to the number system, such as the introduction of decimal point notation. Al-Kindi (801-873) was a pioneer in cryptanalysis and cryptology. He gave the first known recorded explanations of cryptanalysis and frequency analysis in A Manuscript on Deciphering Cryptographic Messages. 

The first known proof by mathematical induction appears in a book written by Al-Karaji around 1000 AD, who used it to prove the binomial theorem, Pascal's triangle, and the sum of integral cubes. The historian of mathematics, F. Woepcke, praised Al-Karaji for being "the first who introduced the theory of algebraic calculus." Ibn al-Haytham was the first mathematician to derive the formula for the sum of the fourth powers, and using the method of induction, he developed a method for determining the general formula for the sum of any integral powers, which was fundamental to the development of integral calculus. The 11th century poet-mathematician Omar Khayyám was the first to find general geometric solutions of cubic equations and laid the foundations for the development of analytic geometry, algebraic geometry and non-Euclidean geometry. Sharaf al-Din al-Tusi (1135–1213) found algebraic and numerical solutions to cubic equations and was the first to discover the derivative of cubic polynomials, an important result in differential calculus. 

Other achievements of Muslim mathematicians include the invention of spherical trigonometry, the discovery of all the trigonometric functions besides sine and cosine, early inquiry which aided the development of analytic geometry by Ibn al-Haytham, the first refutations of Euclidean geometry and the parallel postulate by Nasīr al-Dīn al-Tūsī, the first attempt at a non-Euclidean geometry by Sadr al-Din, the development of symbolic algebra by Abū al-Hasan ibn Alī al-Qalasādī,  and numerous other advances in algebra, arithmetic, calculus, cryptography, geometry, number theory and trigonometry.

Astrology

Islamic astrology, in Arabic ilm al-nujum is the study of the heavens by early Muslims. In early Arabic sources, ilm al-nujum was used to refer to both astronomy and astrology. In medieval sources, however, a clear distinction was made between ilm al-nujum (science of the stars) or ilm al-falak (science of the celestial orbs), referring to astrology, and ilm al-haya (science of the figure of the heavens), referring to astronomy. Both fields were rooted in Greek, Persian, and Indian traditions. Despite consistent critiques of astrology by scientists and religious scholars, astrological prognostications required a fair amount of exact scientific knowledge and thus gave partial incentive for the study and development of astronomy.

The study of astrology was also refuted by several Muslim writers, including al-Farabi, Ibn al-Haytham, Avicenna, al-Biruni and Averroes. Their reasons for refuting astrology were both due to the methods used by astrologers being conjectural rather than empirical and also due to the views of astrologers conflicting with orthodox Islam.

Astronomy
Main article: Astronomy in medieval Islam
See also: List of Muslim astronomers, List of Arabic star names, Maragheh observatory, Ulugh Beg Observatory, and Istanbul observatory of Taqi al-Din

Nasir al-Din Tusi was a polymath who resolved significant problems in the Ptolemaic system with the Tusi-couple, which played an important role in Copernican heliocentrism.

In astronomy, the works of Egyptian/Greek astronomer Ptolemy, particularly the Almagest, and the Indian work of Brahmagupta, were significantly refined over the years by Muslim astronomers. The astronomical tables of Al-Khwarizmi and of Maslamah Ibn Ahmad al-Majriti served as important sources of information for Latin European thinkers rediscovering the works of astronomy, where extensive interest in astrology was discouraged.

An important contribution by Islamic astronomers was their much greater emphasis on observational science and observational astronomy. Their work was based largely on actual observations of the heavens, far more so than the earlier Greek tradition which relied heavily upon abstract calculation.[142] This led to the emergence of the first astronomical observatories, in the sense of modern scientific research institutes, in the Muslim world by the early 9th century.[143][144][145] Accurate Zij catalogues were at the Islamic observatories, which were the first specialized astronomical institutions with their own scientific staff,[143] director, astronomical program,[144] large astronomical instruments, and building where astronomical research and observations are carried out. These Islamic observatories were also the first to employ enormously large astronomical instruments in order to greatly improve the accuracy of observations.[143]

In the 10th century, Abd al-Rahman al-Sufi (Azophi) carried out observations on the stars and described their positions, magnitudes, brightness, and colour, and drawings for each constellation in his Book of Fixed Stars. He also gave the first descriptions and pictures of "A Little Cloud" now known as the Andromeda Galaxy. He mentions it as lying before the mouth of a Big Fish, an Arabic constellation. This "cloud" was apparently commonly known to the Isfahan astronomers, very probably before 905 AD.[146] The first recorded mention of the Large Magellanic Cloud was also given by al-Sufi.[147][148]

In the 11th century, Muslim astronomers began questioning the Ptolemaic system, beginning with Ibn al-Haytham, and they were the first to conduct elaborate experiments related to astronomical phenomena, beginning with the introduction of the experimental method into astronomy by Abu Rayhan Biruni and Ibn al-Haytham.[149] Many of them made changes and corrections to the Ptolemaic model and proposed alternative non-Ptolemaic models within a geocentric framework. In particular, the corrections and critiques of al-Battani, Ibn al-Haytham, and Averroes, and the non-Ptolemaic models of the Maragha astronomers, Nasir al-Din al-Tusi (Tusi-couple), Mo'ayyeduddin Urdi (Urdi lemma), and Ibn al-Shatir, were later adapted into the heliocentric Copernican model,[150][151][unreliable source?] and that Copernicus' arguments for the Earth's rotation were similar to those of al-Tusi and Ali al-Qushji.[152] Some have referred to the achievements of the Maragha school as a "Maragha Revolution", "Maragha School Revolution", or "Scientific Revolution before the Renaissance".[12]

Other contributions from Muslim astronomers include Biruni speculating that the Milky Way galaxy is a collection of numerous nebulous stars, the development of a planetary model without any epicycles by Ibn Bajjah (Avempace),[153] the development of universal astrolabes,[154] the invention of numerous other astronomical instruments, continuation of inquiry into the motion of the planets, Ja'far Muhammad ibn Mūsā ibn Shākir's discovery that the heavenly bodies and celestial spheres are subject to the same physical laws as Earth,[155] the first elaborate experiments related to astronomical phenomena, the use of exacting empirical observations and experimental techniques,[156] the discovery that the celestial spheres are not solid and that the heavens are less dense than the air by Ibn al-Haytham,[157] the separation of natural philosophy from astronomy by Ibn al-Haytham[158] and al-Qushji,[152] the rejection of the Ptolemaic model on empirical rather than philosophical grounds by Ibn al-Shatir,[12] and the first empirical observational evidence of the Earth's rotation by al-Tusi and al-Qushji.[152] Several Muslim astronomers also discussed the possibility of a heliocentric model with elliptical orbits,[159] such as Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, Ibn al-Haytham, Abū al-Rayhān al-Bīrūnī, al-Sijzi, Najm al-Dīn al-Qazwīnī al-Kātibī, and Qutb al-Din al-Shirazi.[160]

In the 12th century, Fakhr al-Din al-Razi criticized the idea of the Earth's centrality within the universe, and instead argued that there are more than "a thousand thousand worlds (alfa alfi 'awalim) beyond this world such that each one of those worlds be bigger and more massive than this world as well as having the like of what this world has."[161] The first empirical observational evidence of the Earth's rotation was given by Nasīr al-Dīn al-Tūsī in the 13th century and by Ali Qushji in the 15th century, followed by Al-Birjandi who developed an early hypothesis on "circular inertia" by the early 16th century.[152] Natural philosophy (particularly Aristotelian physics) was separated from astronomy by Ibn al-Haytham (Alhazen) in the 11th century, by Ibn al-Shatir in the 14th century,[158] and Qushji in the 15th century, leading to the development of an independent astronomical physics.

Astronomy

Nasir al-Din Tusi was a polymath who resolved significant problems in the Ptolemaic system with the Tusi-couple, which played an important role in Copernican heliocentrism.

In astronomy, the works of Egyptian/Greek astronomer Ptolemy, particularly the Almagest, and the Indian work of Brahmagupta, were significantly refined over the years by Muslim astronomers. The astronomical tables of Al-Khwarizmi and of Maslamah Ibn Ahmad al-Majriti served as important sources of information for Latin European thinkers rediscovering the works of astronomy, where extensive interest in astrology was discouraged.

An important contribution by Islamic astronomers was their much greater emphasis on observational science and observational astronomy. Their work was based largely on actual observations of the heavens, far more so than the earlier Greek tradition which relied heavily upon abstract calculation.  This led to the emergence of the first astronomical observatories, in the sense of modern scientific research institutes, in the Muslim world by the early 9th century. Accurate Zij catalogues were at the Islamic observatories, which were the first specialized astronomical institutions with their own scientific staff,  director, astronomical program,  large astronomical instruments, and building where astronomical research and observations are carried out. These Islamic observatories were also the first to employ enormously large astronomical instruments in order to greatly improve the accuracy of observations. 

In the 10th century, Abd al-Rahman al-Sufi (Azophi) carried out observations on the stars and described their positions, magnitudes, brightness, and colour, and drawings for each constellation in his Book of Fixed Stars. He also gave the first descriptions and pictures of "A Little Cloud" now known as the Andromeda Galaxy. He mentions it as lying before the mouth of a Big Fish, an Arabic constellation. This "cloud" was apparently commonly known to the Isfahan astronomers, very probably before 905 AD. The first recorded mention of the Large Magellanic Cloud was also given by al-Sufi.

In the 11th century, Muslim astronomers began questioning the Ptolemaic system, beginning with Ibn al-Haytham, and they were the first to conduct elaborate experiments related to astronomical phenomena, beginning with the introduction of the experimental method into astronomy by Abu Rayhan Biruni and Ibn al-Haytham.[149] Many of them made changes and corrections to the Ptolemaic model and proposed alternative non-Ptolemaic models within a geocentric framework. In particular, the corrections and critiques of al-Battani, Ibn al-Haytham, and Averroes, and the non-Ptolemaic models of the Maragha astronomers, Nasir al-Din al-Tusi (Tusi-couple), Mo'ayyeduddin Urdi (Urdi lemma), and Ibn al-Shatir, were later adapted into the heliocentric Copernican model, and that Copernicus' arguments for the Earth's rotation were similar to those of al-Tusi and Ali al-Qushji.  Some have referred to the achievements of the Maragha school as a "Maragha Revolution", "Maragha School Revolution", or "Scientific Revolution before the Renaissance". 

Other contributions from Muslim astronomers include Biruni speculating that the Milky Way galaxy is a collection of numerous nebulous stars, the development of a planetary model without any epicycles by Ibn Bajjah (Avempace),  the development of universal astrolabes, the invention of numerous other astronomical instruments, continuation of inquiry into the motion of the planets, Ja'far Muhammad ibn Mūsā ibn Shākir's discovery that the heavenly bodies and celestial spheres are subject to the same physical laws as Earth, the first elaborate experiments related to astronomical phenomena, the use of exacting empirical observations and experimental techniques, the discovery that the celestial spheres are not solid and that the heavens are less dense than the air by Ibn al-Haytham, the separation of natural philosophy from astronomy by Ibn al-Haytham and al-Qushji, the rejection of the Ptolemaic model on empirical rather than philosophical grounds by Ibn al-Shatir,  and the first empirical observational evidence of the Earth's rotation by al-Tusi and al-Qushji. Several Muslim astronomers also discussed the possibility of a heliocentric model with elliptical orbits,[159] such as Ja'far ibn Muhammad Abu Ma'shar al-Balkhi, Ibn al-Haytham, Abū al-Rayhān al-Bīrūnī, al-Sijzi, Najm al-Dīn al-Qazwīnī al-Kātibī, and Qutb al-Din al-Shirazi. 

In the 12th century, Fakhr al-Din al-Razi criticized the idea of the Earth's centrality within the universe, and instead argued that there are more than "a thousand thousand worlds (alfa alfi 'awalim) beyond this world such that each one of those worlds be bigger and more massive than this world as well as having the like of what this world has." The first empirical observational evidence of the Earth's rotation was given by Nasīr al-Dīn al-Tūsī in the 13th century and by Ali Qushji in the 15th century, followed by Al-Birjandi who developed an early hypothesis on "circular inertia" by the early 16th century. Natural philosophy (particularly Aristotelian physics) was separated from astronomy by Ibn al-Haytham (Alhazen) in the 11th century, by Ibn al-Shatir in the 14th century, and Qushji in the 15th century, leading to the development of an independent astronomical physics.

Earth sciences

Abū Rayhān al-Bīrūnī was a polymath who is considered a pioneer in Indology, anthropology, geodesy and geology.

Muslim scientists made a number of contributions to the Earth sciences. Alkindus was the first to introduce experimentation into the Earth sciences. Biruni is considered a pioneer of geodesy for his important contributions to the field, along with his significant contributions to geography and geology.

Physics

A page of Ibn Sahl's manuscript showing his discovery of the law of refraction (Snell's law).

In the optics field of physics, Ibn Sahl (c. 940-1000), a mathematician and physicist connected with the court of Baghdad, wrote a treatise On Burning Mirrors and Lenses in 984 in which he set out his understanding of how curved mirrors and lenses bend and focus light. Ibn Sahl is now credited with first discovering the law of refraction, usually called Snell's law. He used this law to work out the shapes of lenses that focus light with no geometric aberrations, known as anaclastic lenses.

Ibn al-Haytham (Alhazen) (965-1039), who is considered a pioneer of optics and the scientific method, developed a broad theory of light and optics in his Book of Optics which explained vision, using geometry and anatomy, and stated that each point on an illuminated area or object radiates light rays in every direction, but that only one ray from each point, which strikes the eye perpendicularly, can be seen. The other rays strike at different angles and are not seen. He used the example of the camera obscura and pinhole camera, which produces an inverted image, to support his argument. This contradicted Ptolemy's theory of vision that objects are seen by rays of light emanating from the eyes. Alhacen held light rays to be streams of minute particles that travelled at a finite speed. He improved accurately described the refraction of light, and discovered the laws of refraction. He dealt at length with the theory of various physical phenomena like shadows, eclipses, and the rainbow. He also attempted to explain binocular vision and the moon illusion. Through these extensive researches on optics, he is considered a pioneer of modern optics. His Book of Optics was later translated into Latin, and has been ranked as one of the most influential books in the history of physics, for initiating a revolution in optics and visual perception. 

Avicenna (980-1037) agreed that the speed of light is finite, as he "observed that if the perception of light is due to the emission of some sort of particles by a luminous source, the speed of light must be finite."[178] Abū Rayhān al-Bīrūnī (973-1048) also agreed that light has a finite speed, and he was the first to discover that the speed of light is much faster than the speed of sound. Qutb al-Din al-Shirazi (1236–1311) and Kamāl al-Dīn al-Fārisī (1260–1320) gave the first correct explanations for the rainbow phenomenon. 

In mechanics, Ja'far Muhammad ibn Mūsā ibn Shākir (800-873) of the Banū Mūsā hypothesized that heavenly bodies and celestial spheres were subject to the same laws of physics as Earth. Abū Rayhān al-Bīrūnī (973-1048), and later al-Khazini, developed experimental scientific methods for mechanics, especially the fields of statics and dynamics, particularly for determining specific weights, such as those based on the theory of balances and weighing. Muslim physicists were influential in the process of combined the fields of hydrostatics with dynamics to give birth to hydrodynamics. They applied the mathematical theories of ratios and infinitesimal techniques, and introduced algebraic and fine calculation techniques into the field of statics. They also generalized the concept of the centre of gravity and applied it to three-dimensional bodies and founded the theory of the ponderable lever. Al-Biruni also theorized that acceleration is connected with non-uniform motion. 

In mechanics, Ibn al-Haytham discussed the theory of attraction between masses, and he stated that the heavenly bodies "were accountable to the laws of physics".[181] Ibn al-Haytham also enunciated the law of inertia when he stated that a body moves perpetually unless an external force stops it or changes its direction of motion. He also developed the concept of momentum, though he did not quantify this concept mathematically. Avicenna (980-1037) developed the concept of momentum, when attempting to provide a quantitive relation between the weight and velocity of a moving body. His theory of motion also resembled the concept of inertia in classical mechanics. 

In 1121, al-Khazini, in The Book of the Balance of Wisdom, proposed that the gravity and gravitational potential energy of a body varies depending on its distance from the centre of the Earth.  Avempace (d. 1138) argued that there is always a reaction force for every force exerted, though he did not refer to the reaction force as being equal to the exerted force. His theory of motion had an important influence on later physicists like Galileo Galilei. Hibat Allah Abu'l-Barakat al-Baghdaadi (1080–1165) wrote a critique of Aristotelian physics entitled al-Mu'tabar, where he negated Aristotle's idea that a constant force produces uniform motion, as he theorized that a force applied continuously produces acceleration. He also described acceleration as the rate of change of velocity. Averroes (1126–1198) defined and measured force as "the rate at which work is done in changing the kinetic condition of a material body"and correctly argued "that the effect and measure of force is change in the kinetic condition of a materially resistant mass." In the early 16th century, al-Birjandi developed a hypothesis similar to "circular inertia." The Muslim developments in mechanics laid many of the foundations for the later development of classical mechanics in early modern Europe. 

Zoology

The first Muslim biologist to develop a theory on evolution was al-Jahiz (781-869). He wrote on the effects of the environment on the likelihood of an animal to survive, and he first described the struggle for existence. Al-Jahiz was also the first to discuss food chains, and was also an early adherent of environmental determinism, arguing that the environment can determine the physical characteristics of the inhabitants of a certain community and that the origins of different human skin colors is the result of the environment. 

Ibn al-Haytham wrote a book in which he argued for evolutionism (although not natural selection), and numerous other Islamic scholars and scientists, such as Ibn Miskawayh, the Brethren of Purity, al-Khazini, Abū Rayhān al-Bīrūnī, Nasir al-Din Tusi, and Ibn Khaldun, discussed and developed these ideas. Translated into Latin, these works began to appear in the West after the Renaissance and appear to have had an impact on Western science.

Ibn Miskawayh's al-Fawz al-Asghar and the Brethren of Purity's Encyclopedia of the Brethren of Purity (The Epistles of Ikhwan al-Safa) expressed evolutionary ideas on how species evolved from matter, into vapor, and then water, then minerals, then plants, then animals, then apes, and then humans. These works were known in Europe and likely had an influence on Darwinism.


Indian Science

The history of science and technology in India begins with prehistoric human activity at Mehrgarh, in present-day Pakistan, and continues through the Indus Valley Civilization to early states and empires. The British colonial rule introduced western education in India. The British system of education, in its efforts to give rise to a native class of civil servants, exposed a number of Indians to foreign institutes of higher learning. Following independence science and technology in the Republic of India has included automobile engineering, information technology, communications as well as space, polar, and nuclear sciences.

Prehistory

Hand-propelled wheel cart, Indus Valley Civilization (3000–1500 BCE). Housed at the National Museum, New Delhi.

4500 BC in sites such as Kuehgllaldkjg in the Indo-Gangetic Plains.By 5500 BCE a number of sites similar to Mehrgarh had appeared, forming the basis of later chalcolithic cultures. The inhabitants of these sites maintained trading relations with Near East and Central Asia.

Irrigation was developed in the Indus Valley Civilization by around 4500 BCE. The size and prosperity of the Indus civilization grew as a result of this innovation, which eventually led to more planned settlements making use of drainage and sewers. Sophisticated irrigation and water storage systems were developed by the Indus Valley Civilization, including artificial reservoirs at Girnar dated to 3000 BCE, and an early canal irrigation system from circa 2600 BCE. Cotton was cultivated in the region by the 5th millennium BCE—4th millennium BCE. Sugarcane was originally from tropical South and Southeast Asia. Different species likely originated in different locations with S. barberi originating in India and S. edule and S. officinarum coming from New Guinea.

By 2800 BCE private bathrooms, located on the ground floor, were found in many houses of the Indus civilization. Pottery pipes in walls allowed drainage of water and there was, in some case, provision of a crib for sitting in toilets. 'Western-style' toilets were also made from bricks and used wooden toilet seats on top. The waste was then transmitted to drainage systems. Large scale sanitary sewer systems were in place by 2700 BCE. The drains were 7–10 feet wide and 2 feet below ground level. The sewage was then led into cesspools, built at the intersection of two drains, which had stairs leading to them for periodic cleaning. Plumbing using earthenware plumbing pipes with broad flanges for easy joining with asphalt to stop leaks was in place by 2700 BCE.

The inhabitants of the Indus valley developed a system of standardization, using weights and measures, evident by the excavations made at the Indus valley sites. This technical standardization enabled gauging devices to be effectively used in angular measurement and measurement for construction. Calibration was also found in measuring devices along with multiple subdivisions in case of some devices. The world's first dock at Lothal (2400 BCE) was located away from the main current to avoid deposition of silt.Modern oceanographers have observed that the Harappans must have possessed knowledge relating to tides in order to build such a dock on the ever-shifting course of the Sabarmati, as well as exemplary hydrography and maritime engineering. This was the earliest known dock found in the world, equipped to berth and service ships.

Excavations at Balakot (c. 2500-1900 BC), present day Pakistan, have yielded evidence of an early furnace. The furnace was most likely used for the manufacturing of ceramic objects. Ovens, dating back to the civilization's mature phase (c. 2500-1900 BC), were also excavated at Balakot.The Kalibangan archeological site further yields evidence of potshaped hearths, which at one site have been found both on ground and underground. Kilns with fire and kiln chambers have also been found at the Kalibangan site.

View of the Asokan Pillar at Vaishali. One of the edicts of Ashoka (272—231 BCE) reads: "Everywhere King Piyadasi (Asoka) erected two kinds of hospitals, hospitals for people and hospitals for animals. Where there were no healing herbs for people and animals, he ordered that they be bought and planted."

Based on archaeological and textual evidence, Joseph E. Schwartzberg (2008)—a University of Minnesota professor emeritus of geography—traces the origins of Indian cartography to the Indus Valley Civilization (ca. 2500–1900 BCE). The use of large scale constructional plans, cosmological drawings, and cartographic material was known in India with some regularity since the Vedic period (1 millennium BCE). Climatic conditions were responsible for the destruction of most of the evidence, however, a number of excavated surveying instruments and measuring rods have yielded convincing evidence of early cartographic activity. Schwartzberg (2008)—on the subject of surviving maps—further holds that: 'Though not numerous, a number of map-like graffiti appear among the thousands of Stone Age Indian cave paintings; and at least one complex Mesolithic diagram is believed to be a representation of the cosmos.'

Archeological evidence of an animal-drawn plough dates back to 2500 BC in the Indus Valley Civilization. The earliest available swords of copper discovered from the Harappan sites date back to 2300 BCE. Swords have been recovered in archaeological findings throughout the Ganges–Jamuna Doab region of India, consisting of bronze but more commonly copper.

Early kingdoms

Ink drawing of Ganesha under an umbrella (early 19th century). Ink, called masi, an admixture of several chemical components, has been used in India since at least the 4th century BC. The practice of writing with ink and a sharp pointed needle was common in early South India. Several Jain sutras in India were compiled in ink.

The Hindu-Arabic numeral system. The inscriptions on the edicts of Ashoka (1st millennium BCE) display this number system being used by the Imperial Mauryas.

The religious texts of the Vedic Period provide evidence for the use of large numbers. By the time of the last Veda, the Yajurvedasaṃhitā (1200-900 BCE), numbers as high as 1012 were being included in the texts. For example, the mantra (sacrificial formula) at the end of the annahoma ("food-oblation rite") performed during the aśvamedha ("horse sacrifice"), and uttered just before-, during-, and just after sunrise, invokes powers of ten from a hundred to a trillion.The Satapatha Brahmana (9th century BCE) contains rules for ritual geometric constructions that are similar to the Sulba Sutras.

Baudhayana (c. 8th century BCE) composed the Baudhayana Sulba Sutra, which contains examples of simple Pythagorean triples, such as: (3,4,5), (5,12,13), (8,15,17), (7,24,25), and (12,35,37) as well as a statement of the Pythagorean theorem for the sides of a square: "The rope which is stretched across the diagonal of a square produces an area double the size of the original square." It also contains the general statement of the Pythagorean theorem (for the sides of a rectangle): "The rope stretched along the length of the diagonal of a rectangle makes an area which the vertical and horizontal sides make together." Baudhayana gives a formula for the square root of two.

The earliest Indian astronomical text—named Vedānga Jyotiṣa—dates back to around 1200 BC, and details several astronomical attributes generally applied for timing social and religious events.The Vedānga Jyotiṣa also details astronomical calculations, calendrical studies, and establishes rules for empirical observation. Since the texts written by 1200 BCE were largely religious compositions the Vedānga Jyotiṣa has connections with Indian astrology and details several important aspects of the time and seasons, including lunar months, solar months, and their adjustment by a lunar leap month of Adhimāsa.  Ritus and Yugas are also described.  Tripathi (2008) holds that ' Twenty-seven constellations, eclipses, seven planets, and twelve signs of the zodiac were also known at that time.' 

The Egyptian Papyrus of Kahun (1900 BCE) and literature of the Vedic period in India offer early records of veterinary medicine.  Kearns & Nash (2008) state that mention of leprosy is described in the medical treatise Sushruta Samhita (6th century BCE).  However, The Oxford Illustrated Companion to Medicine holds that the mention of leprosy, as well as ritualistic cures for it, were described in the Hindu religious book Atharva-veda, written by 1500–1200 BCE.  Cataract surgery was known to the physician Sushruta (6th century BCE).  Traditional cataract surgery was performed with a special tool called the Jabamukhi Salaka, a curved needle used to loosen the lens and push the cataract out of the field of vision. The eye would later be soaked with warm butter and then bandaged.  Though this method was successful, Susruta cautioned that it should only be used when necessary. Greek philosophers and scientists traveled to India where these surgeries were performed by physicians. The removal of cataract by surgery was also introduced into China from India.  Brahmanic hospitals were established in what is now Sri Lanka as early as 431 BCE.  Ashoka (reign: 273 BCE to 232 BCE) also established a chain of hospitals throughout the Mauryan empire (322–185 BCE) by 230 BCE. 

During the 5th century BCE, the scholar Pāṇini had made several discoveries in the fields of phonetics, phonology, and morphology.  Metal currency was minted in India before 5th century BCE,[33][34] with coinage (400 BCE—100 CE) being made of silver and copper, bearing animal and plant symbols on them. 

Zinc mines of Zawar, near Udaipur, Rajasthan, were active during 400 BC.  Diverse specimens of swords have been discovered in Fatehgarh, where there are several varieties of hilt. These swords have been variously dated to periods between 1700-1400 BCE, but were probably used more extensively during the opening centuries of the 1st millennium BCE.  Archaeological sites in such as Malhar, Dadupur, Raja Nala Ka Tila and Lahuradewa in present day Uttar Pradesh show iron implements from the period between 1800 BC - 1200 BC. Early iron objects found in India can be dated to 1400 BC by employing the method of radio carbon dating.  Some scholars believe that by the early 13th century BC iron smelting was practiced on a bigger scale in India, suggesting that the date of the technology's inception may be placed earlier.  In Southern India (present day Mysore) iron appeared as early as 11th to 12th centuries BC.  These developments were too early for any significant close contact with the northwest of the country. 

Late Middle Ages

Jantar Mantar, Delhi—consisting of 13 architectural astronomy instruments, built by Jai Singh II of Jaipur, from 1724 onwards.

The infinite series for π was stated by Madhava of Sangamagrama (c. 1340-1425) and his Kerala school of astronomy and mathematics. He made use of the series expansion of arctanx to obtain an infinite series expression, now known as the Madhava-Gregory series, for π. Their rational approximation of the error for the finite sum of their series are of particular interest. They manipulated the error term to derive a faster converging series for π. They used the improved series to derive a rational expression,  104348 / 33215 for π correct up to nine decimal places, i.e. 3.141592653. The development of the series expansions for trigonometric functions (sine, cosine, and arc tangent) was carried out by mathematicians of the Kerala School in the fifteenth century CE. Their work, completed two centuries before the invention of calculus in Europe, provided what is now considered the first example of a power series (apart from geometric series). 

Shēr Shāh of northern India issued silver currency bearing Islamic motifs, later imitated by the Mughal empire.  The Chinese merchant Ma Huan (1413–51) noted that gold coins, known as fanam, were issued in Cochin and weighed a total of one fen and one li according to the Chinese standards. They were of fine quality and could be exchanged in China for 15 silver coins of four-li weight each. 

The Seamless celestial globe was invented in Kashmir by Ali Kashmiri ibn Luqman in 998 AH (1589-90 CE), and twenty other such globes were later produced in Lahore and Kashmir during the Mughal Empire.  Before they were rediscovered in the 1980s, it was believed by modern metallurgists to be technically impossible to produce metal globes without any seams, even with modern technology. These Mughal metallurgists pioneered the method of lost-wax casting in order to produce these globes. 

Portrait of a young Indian scholar, Mughal miniature by Mir Sayyid Ali, ca. 1550.

It was written in the Tarikh-i Firishta (1606–1607) that the envoy of the Mongol ruler Hulegu Khan was presented with a pyrotechnics display upon his arrival in Delhi in 1258 CE.  As a part of an embassy to India by Timurid leader Shah Rukh (1405–1447), 'Abd al-Razzaq mentioned naphtha-throwers mounted on elephants and a variety of pyrotechnics put on display.  Firearms known as top-o-tufak also existed in the Vijayanagara Empire by as early as 1366 CE.  From then on the employment of gunpowder warfare in the region was prevalent, with events such as the siege of Belgaum in 1473 CE by the Sultan Muhammad Shah Bahmani. 

In A History of Greek Fire and Gunpowder, James Riddick Partington describes Indian rockets, mines and other means of gunpowder warfare:[96]The Indian war rockets were formidable weapons before such rockets were used in Europe. They had bam-boo rods, a rocket-body lashed to the rod, and iron points. They were directed at the target and fired by lighting the fuse, but the trajectory was rather erratic. The use of mines and counter-mines with explosive charges of gunpowder is mentioned for the times of Akbar and Jahāngir.



By the 16th century, Indians were manufacturing a diverse variety of firearms; large guns in particular, became visible in Tanjore, Dacca, Bijapur and Murshidabad.  Guns made of bronze were recovered from Calicut (1504) and Diu (1533).  Gujarāt supplied Europe saltpeter for use in gunpowder warfare during the 17th century. Bengal and Mālwa participated in saltpeter production. The Dutch, French, Portuguese, and English used Chāpra as a center of saltpeter refining.

The construction of water works and aspects of water technology in India is described in Arabic and Persian works.  During medieval times, the diffusion of Indian and Persian irrigation technologies gave rise to an advanced irrigation system which bought about economic growth and also helped in the growth of material culture.[100] The founder of the cashmere wool industry is traditionally held to be the 15th century ruler of Kashmir, Zayn-ul-Abidin, who introduced weavers from Central Asia. 

The scholar Sadiq Isfahani of Jaunpur compiled an atlas of the parts of the world which he held to be 'suitable for human life'.  The 32 sheet atlas—with maps oriented towards the south as was the case with Islamic works of the era—is part of a larger scholarly work compiled by Isfahani during 1647 CE.  According to Joseph E. Schwartzberg (2008): 'The largest known Indian map, depicting the former Rajput capital at Amber in remarkable house-by-house detail, measures 661 × 645 cm. (260 × 254 in., or approximately 22 × 21 ft).